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2The time harmonic three dimensional finite depth

floating body problem is reformulated as a boundary

integral equation. Using the elementary fundamental

solution that satisfies the boundary condition on the

sea bottom but not the linearized free surface condition,

the integral equation extends over both the ship hull

and the free surface. It is shown that this integral

equation is free of irregular frequencies, that is, it

has at most one solution.

1. Introduction

In his classic work on the floating body problem, F.

John (1950), showed how the boundary value problem

could be reduced to an integral equation over the wetted

portion of the ship hull. The kernel of his integral

operator was the Green's function for the entire fluid

domain with no ship present that satisfied the boundary

condition at the bottom of fluid (assumed flat) and the

linearized free surface condition on the entire fluid-air

. . . . . .
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boundary. John demonstrated the existence of irregular

frequencies, frequencies for which the integral equation

was not uniquely solvable. Recently Kleinmnan (1982)

provided-two methods of modifying the integral equation

so that there were no irregular frequencies. In one

* . case the domain of the integral operator was enlarged and

in the other the operator itself changed, but both methods

employed John's Green's function which is rather complicated,

especially in the three dimensional, finite depth case.

Another way to treat this problem is to employ a much

simpler Green's function, one that satisfies only the

boundary condition at the bottom of the fluid. Since this

does not satisfy the free surface condition, we get an

integral equation over both the wetted surface of the ship

hull and the free surface. Such an integral equation has

been derived and even solved numerically for certain cases,

e.g. Yeung (1978) and Bai and Yeung (1974). Numerical

evidence indicated that this integral equation did not

exhibit irregular frequencies but no conclusive analytical

argument has yet appeared to support this conjecture.

The present paper provides a proof of the conjecture

that this integral equation has no irregular frequencies.
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By irregular frequencies is meant frequencies for which

the integral equation is not uniquely solvable even

though the solution of the corresponding boundary value

problem is unique. What we prove is that the integral

equation obtained using a simple combination of elementary

sources is uniquely solvable at all frequencies.

It should be emphasized that our concern here is

not with uniqueness for the boundary value problem itself.

There John required certain geometric restrictions in

order to establish uniqueness. These may be somewhat

relaxed to include hull forms with corners and non normal

intersections with the free surface (see Kleinman, 1982).

However, in the three dimensional case treated here, we

retain the restriction that vertical rays from the free

surface may not intersect the ship hull in order that the

boundary value problem be uniquely solvable. Our concern

here is with integral equation formulations and the irregular

frequencies which are introduced in some cases.

It should be noted that the occurrence of irregular

frequencies in integral equation formulations of acoustic

scattering problems is entirely analogous to the present

case. (See e.g. Smirnov, 1964; Brundrit, 1965; Copley, 1968;

Schenck, 1968 and Chertok, 1970, 1971) However, methods

for removing the irregular frequencies in acoustic scattering

all essentially involve making the kernel of the integral

equation more complicated (e.g. Brakhage and Werner, 1965,

Burton and Miller, 1971, Kleinman and Roach, 1974, 1982).
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In the present case the irregular frequencies are removed

by making the kernel simpler but extending the range of

integration.

2. Notation and Statement of Problem

Specifically, we treat the three dimensional floating

body problem with finite depth, h. If we denote the fluid

domain by D+, the hull by C0 , the free surface by Cf and

the bottom by C., and if we denote by D_ the domain consisting

of the upper half space and the interior of the ship hull,

then geometry may be illustrated as in Figure 1.

D

x

z ~Cf

n CO0 D +

C B

Figure 1

The function * solves the floating body problem if
V2. -0 in D+, V on Co, n 0 on CE, (1)

+ k - 0 on Cf

and provided * satisfieS a radiation condition. Here an

is the normal derivative directed into D+ and V is a given

function. The radiation condition is specified in the form

ik  " ° (P-1/2 )as . (2)

.. 0



uniformly in e and y. This condition may be shown to

guarantee that
eikop-

*(p) - (f(e) + O.P-)) as p " , (3)

(p,e) being polar coordinates in the free surface-water

plane and k0 is the positive real of the transcendental

equation

k = ko tanh k0 h . (4)

Now define the Green's function

Y(P,q) -(- 1 - 1 (5)

where p - (xp, yp, zp), q - (Xq, y, zq) and ql (x , -2h-yq, z ),

and we have oriented a rectangular coordinate system so that

the plane y - 0 is the water plane and free surface while

y - -h is the bottom.

With the Green's function defined in (5), which

has a double strength singularity on C., Green's theorem

for solutions of Laplace's equation in D+ which satisfies

the radiation condition (2) takes the formI (p, q (q) (6)
(' ( ' 3 n" ) asq , (p) (p)( )

q q q
C uCB

Cof
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where

a(p) - 2 for p e D+ u CB
- 1 for p on smooth points of CO U Cf (7)

- 0 for p e D-.

If # satisfies all of the boundary conditions in (1) we obtain the

boundary integral equation

#(p) + 7 *(q) a (p,q)ds + f (q) [ (q p,q)+ky(pq) I ds
C 0n q C f qq

-f y(p,q)V(q)dsq (8)
Co

where p lies either on C0 or Cf. The integral on CE vanishes

since both y and * satisfy a homogeneous Neumann condition

and the integral over a large cylinder vanishes since y -

0(p- ) and * - 0(P -1/2) the radiation condition ensuring

that * has asymptotic growth given by (3). As explained in the

introduction, this equation has irregular frequencies if there are

certain values of k for which the homogeneous equation (V=0)

has nontrivial solutions. We prove here that such irregular

frequencies do not exist.

3. Uniqueness

Specifically our central result can be stated as follows:

Theorem: If (a) * - ---- f(8) + 001 as P

and (b) (p) + I s(q) F d + I *(q) + k-ylds =
C0 n q Cf qq

for all p e CO and Cf ,

(c) 0 is continuous on CO U Cf

then 0(p) B-0.

. . " . .
.-"€ ;, -. ''-'' ..''. '-.-' -. ' -. '-' -.-- '- *.'.....-",", -' ". - *.,", ."*'., "-, -",". .". .", ''"
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Proo The proof of this theorem depends on the growth of

potentials with densities satisfying conditions (a), (b),

and (c) of the theorem. Assume that f is a function

satisfying (a), (b) and (c) of the theorem and define the

functions u+ and u_ in D+ and D_ respectively as

U
+ p3q) +ky

u Co f(q) T (p,q)dsq+f 0(q)Fjnq (P'q)+k (pq)]dsa,{ . (9)
S Cf q pD_

As will be seen shortly, an essential ingredient involves the

growth of u_ for large radial distances from the origin. Observe

that since y has no singularities when qcC ° u Cf pcD. and y

is a solution of Laplace's equation it follows that

V'2u_ - 0 , peD_. (10)

The jump conditions for the double layer defined on C0 u Cf

take the form

P*CoUC O(q) a - q (p)
0(p f ds T= *(p) + rnq - (p,q)ds

peD+ CoUC f  CUCf  q q

PCCo UCof

This, together with the continuity of the single layer, implies

that

lim Dy ay
p-*C uCf u_(p)-n(p)+ o/(q) (p,q)ds + f 0(q) Tn- +ky ds (12)

peD 0C 0 n q C f g
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But * satisfies the homogeneous equation (b) hence
lir u (p) = 0. (13)
P -Co0UC f
pCDu

However, as established in the appendix, lim u - 0. Hence

the maximum principle, which asserts that u_ assumes its

Exaximum and minimum values on the boundary., implies that

-q 1-0 , p D. (14)

Therefore

u 0 on C and C f (15)
=n ~ 0f

where an indicates the normal derivative from D . Using

the defining equation (9) for u we find with the usual jump

conditions for the single layer

C f ) (pq)ds +k fO(q) T- y(p,q)dsa+ B(p) (p; = 0 (16)
np C UC qn q Cf p

where

8(p) = 0 , p CO

• -k, p Cf

Note that while existence of the normal derivative of the

double layer in some weak sense was needed in order to apply

the divergence theorem, once it is established that u_ = 0

and hence has an ordinary normal derivative, namely zero, the

defining equation for u_ ensures that the normal derivative

of the double layer exists in the ordinary sense since u

and the single layer have ordinary normal derivatives.

-W
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Now examine the limiting values of u+ as p approaches

CoUCf from D+. Using the usual jump conditions we find

U+(p)C -o(p)+ f*(q)= (p,q)ds q+ fo(q)[YTq +ky]dsq , PECoUC f  (17)
C 0 q ~ Cf anq

and, since * satisfies the integral equation (b),
u+(p) = -2(p) , PeCoUCf . (18)

Observe that since 4 is assumed to have growth as specified in

(ajp, equation "18) ensures that u+(p) has the same growth on

Cf.

Now form the normal derivative of u+ from D obtaining

+ a ay
=~i ,,f *(a) (p,q)ds +k fo(q). n(pq)ds -B(p)4(p). (19)

+ p C 0 UCf q q Cf q

Since the normal derivatives of the double layer with continuous

density are the same from either side provided one of them exists,

we use equations (16) and (18) to obtain

au+
- -28(p)o(p) = 8(p)u+ . (20)

With the definition of B(p) (cf. eqn. (16)) we see that

au+(21)
= 0 , PEC 0 (

+

aftd

au+
=n -ku+ ,PcCf. (22)

+

............. . . . ..|..

-,' t ' ' ' ' , ' ' ' ' ' ' " " ' " -: - . - -'-.m , m -- ~ m - o ~ m n ' ';



-10-

Also,
aDu+
.=- 0 , pec B  (23)

+

since this property is inherited from y(p,q). Furthermore

by its construction u+ satisfies Laplace's equation in D+

and since u+ also satisfies the Neumann condition on CE and

the free surface condition on Cf , u+ has the representation,

following John (1950),

Z Un(P:)cosh k A + z 2 > a (24)

+ = n nZ>a,(4n=0

where kn are the roots of the transcendental equation (4)

and a is any number greater than the diameter of the ship

hull i.e.

a > max p

Recall that (p, ,y) are the cylindrical coordinates of the point

p. Moreover, as shown in the Appendix, u+ = 0 1
p

hence
0

u+(p,Dh) cosh kn (y+h)dy 0+ n (25)
-h

which implies, with the orthogonality of {cosh kn (y+h)}

on L2 (-h,0) , that 1
Un (P ) -- 0 (- _) (26)

p
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This in turn implies that

2w-ime 
__

Un(POO) e do 0 - T--27; n ( ~ l • d 0 ( - ) ( 2 7 )

and since the most general form of un(PG) is

un ( P,9) - iam H IIl (knP) +bnm"Hm (knp)] e (28)

it follows that
) +b H (2) 1 ) (29)

IMmi (kn)~) n

Here H( 1 ) ' 2 1 are Hankel functions of the first and second kindm

respectively. The fact that kn is positive imaginary for

n>O then ensures that

b - 0 ,n>O.

Then

u+ (p,O,o) ( 1M H (k P) eim cosh kh
n 0 M(o Imi n

'" IW 
( 2 1) (P) eima

+ E b Him i  imP cosh koh (30)

Poom e

and because u+(p, 9 ,o) has the same asymptotic growth as

H(l) (koP) , cf eqn. (18), uniformly in 9 we may conclude

that bom = 0 which then implies that

u~ (p, 9 ,y) = Z a H (1) im cosh k (y+h) (31)+ n-0 m-- n1 Im nP n

hence u+ satisfies the radiation condition for -h<y<0+r
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Thus u is a solution of the homogeneous floating body

problem in D+ (cf. (1) and (2)) and therefore: provided that

Co satisfies the geometric restrictions of the uniqueness

proof (John (1950), Kleinman (1982)), it follows that u+ M 0

in D+ and hence also on C0 UCf. Equation (20) then ensures

that *(P) = 0 on C0 UCf. That is, the only solution of the

integral equation (b) satisfying (a) and (c) is * - 0. This

means that the integral equation (7) has no irregular frequencies

and has at most one solution. Existence of this solution for

all k will be discussed elsewhere.

We remark that if the integral equation (7) has a solution

* on CoUC f then the solution of the inhomogeneous floating body

problem (1) is given by
(p) I f (q)a Y (p,q) ds 1 f (q) [a Y + ky(p,q)Ids (3Z)

2 fn

+ 1 1 V(q)y(p,q)dsq2 C0

for pD u CB.
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Appendix: On the growth of u+.

Here we prove the Lemma needed in establishing

uniqueness of solutions of the integral equation. For

convenience we restate it as follows:

iko 1

Le-aIf a)*-_ (f () + 00 ) as p

b) *(P) +I *(q) LyA ds +if (q)[y +kyIds 0
C nq q C n q q

PEC0 UCf ,

c) f is continuous on CoUCf ,

and d) u+ - I *(q) 1--ds + f *(q) ay + kds p D+
anq q C an qCo f

then u - 0(-./._) as r * , < 1/2

and

U+ M0( 1 as p

where rp II 1/ 2

Proof With y as defined in equation (5) it is clear that

f 4 (q) iy. ds = 0 7~)(Al
Co  nq qrp

and

• i I

CfnBa a(q)[- + kylds - 0(L.) (A.2)

f a an q

q...

- 1 . ~v * *~ .* *
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where C ffnBa is that portion of the free surface contained

in the ball of radius a. It is a bit more work to establish

S'the growth of

Cfn *(q)( + kyldSq
C fa q

where BC is the complement of the ball. Considering first
a

the term involving the normal derivative, which on Cf is

a n a
q q 0,

we find that

Y1 d () y y +2h""#(q) -' "s # (q dP de (A.3)
c q

C flB a 0Oa

where (P,O) are the cylindrical coordinates of q on Cf and

R(h) _ .(x x.)2+ (zp-zq) +(yp+2h)2

Introduce two sets of spherical coordinates of the form

zp - rp sin a cos ep zp - r' sin a' cos ep

xp -rp sinasine and x - r' sin- a sin e
p XPp

y- rp cos a y + 2h - r' cos a'

where O<e <2v, Oa<.w, O<'a<.v/2, r ,r'lO
p-p -

Clearly (r 0 p,a) are the usual spherical coordinates while

r' and a' will depend on h. Explicitly

- x 2 +p2 +(yp+2h)2  - I +2hyp+4h2

r 2
hence -? < 1 for 2h +hy >0 , a condition always satisfied

r --
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for pe D+ uD. Note that y >-h when pc D uD hence
+ + +

a' <'R/2 whereas a varies over a larger interval, in fact

a>w/2 when peD+. In this notation

R(h) - /r 2 -2r p sin a cos(e-e) (A.4)

*and 
2 w o

"'Ol) 2-L dsq yL 0(Jnq (rp2 +02 -2r (sin a cos (e-ep)3/2

r'cos aa cosa

r' 2  . 2 -2r' P sin a' cos 3 /2 -od

(A.5)

It suffices to consider the first integral on the right, the

analysis for the second being identical with r', a', y' replacing

rp1 a, y. For brevity we omit the subscript and denote rp by r

in the ensuing analysis and consider

27r"" 2_3/cosa I 2 -' 0° dp de fo r A6
J (r +0 -2r0 sin a Co. (e-_ ))3-

Using the asymptotic form of # and the substitution P-rt we find

2w

-*r cos 2 2 #lq) Po do de
(r +P2 -2rP sin a cos(e-e

ap

COS a I ik 0 rt (f(e)+0(1 ))tdtde
r" 2 ,/t (l+t 2-2t sin a cos (-ep)) 3/2

o a

hence the integral is 0( for a j. . Note that this expression
r

does not obviously exist when a. . To see what happens as a.

observe that

J., * 
S 

r-
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21T

lir r cos I *() 2_ d de
I I (r +P -2r0 sin a cos(e-8p))3/2
0 a

2ff

-urn - (q)~; 2 1 -3" q- ((xp-xq) 2+(y p-yq) 2+ (p-Zq) 271/2 yq 0
*.0+ 0 a p qp

p-C + 2w (q) o(pq)ds,

ptD CfUB a

- +2vr(p), p >a

where Y 0 21((xp-Xq) 2 +(yp - yq) 2 +(zp-zq )2)1/2

.pq

and the jump-condition for a double layer is used. Here we *ake

no use of the assumption that 0 is a solution of the integral

equation b). The integral in the jump condition vanishes for p

on Cf, (y p-0). Now we use a) which asserts that on Cf, F is

assumed to grow as 0(--m), which is the desired growth. Hence
0

the integral (A.6) is 0(1/) for 0 < a.< w Redoing the analysis
-1/2

r

with r', a', y' replacing ro, , y leads to a similar result.

Hence we conclude that

*(q) (p,q)ds 01 as r -, yp(A.7)
an Cf nBr

Next we consider

*(q)-y (p, q)ds q I (q) + WM dpde .(A.8)

C fa 0 a

f 
. . . . ..
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" Using the notation previously introduced and the asymptotic form of

we must treat integrals of the form

2w e ik0 P (fe+1Jdd (A.9)i70 22 -2017

1a (r+P+_ 2rQ sin acos(e-ep)1/ 2

and a similar integral with r', a' replacing r, a.

The term involving 0(!) is easily handled since

* 2 ik 0

V (- = -7-2rp sin a cos (-6 17/ (.O"0 a ( pepl

2w2< c f [d de
./(r2+p -2ro sin a cos e)1/2

2w

c dtde
/r" " 1t 2 -2t cos e)

0 0

where c is independent of r and a. This is seen to be 0(1, 2) since

r1 1

the integral on the right exists and is independent of r.

The remaining integral is of the form

2w C ik0
i r fe 0 0 f(9)dPd6

Il J J(r2+P2-2rQ sin a cos(8-8p))1/2 (A.II)

I j p
0 a

2w ik 0 a
1 .2 f(e)8," e do

0-l 0 (r 2 +a 2-2ar sin a cos(e-ep /

9d: 2w

2-f e Je OP d //21 dodeX 0 a r2+02_2rP sin acos(G 1 /2 'J0 a

• .. -.-... ..... ........... S.- .. ' .'.'.-'...'.,..,-.. .... .'-S. . .. . - S . -, _...o" ............. .", -i ."' -'±. -. "... ; " 2 -'> .%, " - %
"". .
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The first term on the right is clearly 0(1) hence, on performing

the indicated differentiation, we have

2w

e f • (r 2-p 2)f(e)dpde

0 a 4 (r +0 -2ro sin a cos(e-0p

and letting P - rt 2w ik0rt

1 1 0(i -L 1 2 ~ 7  2 f63/2 dtde.
S2ik 0r' /2 t (l+t -2t sin a cos(e-eD))3

o a
"" r

We break up the t integration into three parts and use the estimates

2w1/2 ik 0rt 21/2r e 0 (1-t2) f (e) dtde 2J E (l+t2-2t sin a cos(8- 00) 3/2 clifli (1 -t2)dt

0 a/r 0
:, = Clilfil I

- and

2 7r 1/2

2 • (1-t f (e) dtde (t2 _l)dt
o 2 vt (l+t2-2t sin a cos(e-e ))3/2 cII. (t-1) 3P- 2 V"7(t-1)3

= c21Ill ,

where 1I1'11 is the sup norm and the constants cI and c2 are

independent of a, ep, r and f, to obtain

O( 1 ) 21 2 ik0rt 2

r 2ikr 12 f 1 1 l+t--2tsin a cos(-e)

0 1/2 p



-21-

which we write as
2w 1 (1+ lkrt 2

1 = 0(2 1 27rf() 1/2 (l-t2 )dt
1ikl/2 0  1/2 l+t2-2t sin a cos (6-e

2 iAoru

e 0 i(1-u 2)du de
1/2 u 2(,+u2-2u sin c Cos 0-6 )

1p

Letting u = in the second integral we get

2 i ik0rt 

1 (e1 ( i J ( -e O ("-t2)dt
S 0(-71)/2ik0r/ 2  i 1/2 t 2 (1+t2-2t sin a cos (8-e ))3/2

(A.12)

The integral in (A.12) which we denote as 12 satisfies the

inequality

A r

1= 2 f(8) 1)e(10rte orH-t 2)dt

0 1 /2 (+t2-2t sin cos (e-ep))3/ 2

2w 1 t kricI p kr k

Ilkl E J. r-~ l ~ ~

f 1 / (1+t2-2t sin a cos 8)3/2

(A. 13)

for arbitrary 6 e (0,1) (we further restrict 6 subsequently) and

using the estimates

-.. '. .. -. .-.~ o .. . %. .,' " B° " - ". " ". " ". . , - % . . ,'. - . • • ,, .' ,' ., ., •*. j,
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lt 21

/t- 2

I eio.:k 2

6i0 rtO 4 ko r (1-t) <t<1

we obtain

I(A. 14)

j J(l+t2-2t sin a cos 6))
0 1/2

where c is independent of r, a, e and f.P

But for 0 < a< w and 0 < 8 < 2n we may show that

1 < 2 < 2
1+t2-2t Sin a cos 6 - +t2-2t cos e - (l-t)2

hence

2w 1

I c2fI f dtde 1 .6
2 f (l+t -2t cos 8) 2

0 1/2

The kernel is weakly singular at t=1, e=0 hence the integral

exists. Thus there is a constant, c2, such that

12 .< C211f II r'

which with (A.12) establishes that

1- 0(r 6 - 1/2) . (A.15)

.~~~~ ~~~~~ ~~~~~...... .......................... .. ,..... .,-..............' ,'v-.,..-'
" '', m

o''
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We may choose 6 c (0 to ensure that I1 decays with r.'2
* A similar growth estimate is obtained if r', a' replace r, a

hence, with (A. 8) we see that

C BC(q)y(p,q)ds = 0(r - 1/2)
CfBc

This result taken together with (A.7) ensures that

J (q) [-- + ky]ds = 0(r6 - 1/2 (A.17)

Cf nB c

which with (A.1) and (A.2) establishes that
6 - 1/2)

u+ = 0(r p (A.18)

which implies, for -h <_ u < 0, that

- O(P 6-1/2)
p

-. . . . .

...... . . . . . .
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